The contribution of K(+) channels to human thoracic duct contractility.
نویسندگان
چکیده
In smooth muscle cells, K(+) permeability is high, and this highly influences the resting membrane potential. Lymph propulsion is dependent on phasic contractions generated by smooth muscle cells of lymphatic vessels, and it is likely that K(+) channels play a critical role in regulating contractility in this tissue. The aim of this study was to investigate the contribution of distinct K(+) channels to human lymphatic vessel contractility. Thoracic ducts were harvested from 43 patients and mounted in a wire myograph for isometric force measurements or membrane potential recordings with an intracellular microelectrode. Using K(+) channel blockers and activators, we demonstrate a functional contribution to human lymphatic vessel contractility from all the major classes of K(+) channels [ATP-sensitive K(+) (KATP), Ca(2+)-activated K(+), inward rectifier K(+), and voltage-dependent K(+) channels], and this was confirmed at the mRNA level. Contraction amplitude, frequency, and baseline tension were altered depending on which channel was blocked or activated. Microelectrode impalements of lymphatic vessels determined an average resting membrane potential of -43.1 ± 3.7 mV. We observed that membrane potential changes of <5 mV could have large functional effects with contraction frequencies increasing threefold. In general, KATP channels appeared to be constitutively open since incubation with glibenclamide increased contraction frequency in spontaneously active vessels and depolarized and initiated contractions in previously quiescent vessels. The largest change in membrane voltage was observed with the KATP opener pinacidil, which caused 24 ± 3 mV hyperpolarization. We conclude that K(+) channels are important modulators of human lymphatic contractility.
منابع مشابه
Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملActivation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملStudy on mechanism of vasorelaxatory effect of Vitis vinifera leaf extract in rat aorta
Introduction: Our previous studies showed that hydroalcoholic extract of leaf of Vitis vinifera relaxes the phenylephrine-induced contraction in rat thoracic aorta. This effect was dependent on endothelial integrity and NO-cGMP system. The vasorelaxant effect of extract was much lesser on KCl-induced contraction. We, therefore, postulated that K+ channels are involved. The main aim of the pr...
متن کاملThe Effect of Flavonoid Naringenin on Contractile Response of Thoracic Aorta Isolated from Diabetic Rats
Background & Aims: Considering increasing incidence of cardiovascular disorders in diabetes mellitus and some evidence on antioxidant and antidiabetic potentials of naringenin, this study was conducted to evaluate the beneficial effects of 6-week administration of naringenin on contractile reactivity of isolated thoracic aorta in diabetic rats. Methods: Male Wistar rats were divided into contro...
متن کاملEffects of the polyphenol resveratrol on contractility of human term pregnant myometrium.
The ideal agent for prevention and treatment of uterine abnormal contractility has not been found. The polyphenol resveratrol possesses a wide spectrum of pharmacologic properties, but its influence on the contractility of human myometrium is not defined. The present study evaluated the effect of resveratrol on the oxytocin-induced contractions of human term pregnant myometrium in vitro and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 307 1 شماره
صفحات -
تاریخ انتشار 2014